流程图

代码

    1. ```flow
    2. st=>start: User login
    3. op=>operation: Operation
    4. cond=>condition: Successful Yes or No?
    5. e=>end: Into admin
    6. st\->op\->cond
    7. cond(yes)\->e
    8. cond(no)\->op
    9. ```

结果

流程图、数学公式、时序图支持 - 图1

时序图

代码

    1. ```seq
    2. .........
    3. ```
    4. # or
    5. ```sequence
    6. .........
    7. ```

结果

流程图、数学公式、时序图支持 - 图2

数学公式

行内的公式 Inline

代码

    1. $$E=mc^2$$
    2. Inline 行内的公式 $$E=mc^2$$ 行内的公式,行内的$$E=mc^2$$公式。
    3. $$c = \\pm\\sqrt{a^2 \+ b^2}$$
    4. $$x > y$$
    5. $$f(x) = x^2$$
    6. $$\alpha = \sqrt{1\-e^2}$$
    7. $$\(\sqrt{3x\-1}\+(1\+x)^2\)$$
    8. $$\sin(\alpha)^{\theta}=\sum\_{i=0}^{n}(x^i \+ \cos(f))$$
    9. $$\\dfrac{\-b \\pm \\sqrt{b^2 \- 4ac}}{2a}$$
    10. $$f(x) = \int\_{\-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
    11. $$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}\-\phi\Bigr) e^{\frac25 \pi}} = 1\+\frac{e^{\-2\pi}} {1\+\frac{e^{\-4\pi}} {1\+\frac{e^{\-6\pi}} {1\+\frac{e^{\-8\pi}} {1\+\cdots} } } }$$
    12. $$\displaystyle \left( \sum\\_{k=1}^n a\\_k b\\_k \right)^2 \leq \left( \sum\\_{k=1}^n a\\_k^2 \right) \left( \sum\\_{k=1}^n b\\_k^2 \right)$$
    13. $$a^2$$
    14. $$a^{2\+2}$$
    15. $$a\_2$$
    16. $${x\_2}^3$$
    17. $$x\_2^3$$
    18. $$10^{10^{8}}$$
    19. $$a\_{i,j}$$
    20. $$\_nP\_k$$
    21. $$c = \pm\sqrt{a^2 \+ b^2}$$
    22. $$\frac{1}{2}=0.5$$
    23. $$\dfrac{k}{k\-1} = 0.5$$
    24. $$\dbinom{n}{k} \binom{n}{k}$$
    25. $$\oint\_C x^3\, dx \+ 4y^2\, dy$$
    26. $$\bigcap\_1^n p \bigcup\_1^k p$$
    27. $$e^{i \pi} \+ 1 = 0$$
    28. $$\left ( \frac{1}{2} \right )$$
    29. $$x\_{1,2}=\frac{\-b\pm\sqrt{\color{Red}b^2\-4ac}}{2a}$$
    30. $${\color{Blue}x^2}\+{\color{YellowOrange}2x}\-{\color{OliveGreen}1}$$
    31. $$\textstyle \sum\_{k=1}^N k^2$$
    32. $$\dfrac{ \tfrac{1}{2}[1\-(\tfrac{1}{2})^n] }{ 1\-\tfrac{1}{2} } = s\_n$$
    33. $$\binom{n}{k}$$
    34. $$0\+1\+2\+3\+4\+5\+6\+7\+8\+9\+10\+11\+12\+13\+14\+15\+16\+17\+18\+19\+20\+\cdots$$
    35. $$\sum\_{k=1}^N k^2$$
    36. $$\textstyle \sum\_{k=1}^N k^2$$
    37. $$\prod\_{i=1}^N x\_i$$
    38. $$\textstyle \prod\_{i=1}^N x\_i$$
    39. $$\coprod\_{i=1}^N x\_i$$
    40. $$\textstyle \coprod\_{i=1}^N x\_i$$
    41. $$\int\_{1}^{3}\frac{e^3/x}{x^2}\, dx$$
    42. $$\int\_C x^3\, dx \+ 4y^2\, dy$$
    43. $${}\_1^2\!\Omega\_3^4$$

结果

E=mc2E=mc^2

Inline 行内的公式 E=mc2E=mc^2

c=±a2+b2c = \pm\sqrt{a^2 + b^2}

(12)\left ( \frac{1}{2} \right )

x1,2=b±b24ac2ax_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}

x2+2x1{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}

k=1Nk2\textstyle \sum_{k=1}^N k^2

12[1(12)n]112=sn\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n

(nk)\binom{n}{k}

0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots

k=1Nk2\sum_{k=1}^N k^2

k=1Nk2\textstyle \sum_{k=1}^N k^2

Cx3dx+4y2dy\int_C x^3\, dx + 4y^2\, dy

12!Ω34{}_1^2!\Omega_3^4

多行公式 Multi line

代码

math orlatex or ```katex

    1. ```math
    2. f(x) = \int\_{\-\infty}^\infty
    3. \hat f(\xi)\,e^{2 \pi i \xi x}
    4. \,d\xi
    5. ```
    6. ```math
    7. \displaystyle
    8. \left( \sum\\_{k=1}^n a\\_k b\\_k \right)^2
    9. \leq
    10. \left( \sum\\_{k=1}^n a\\_k^2 \right)
    11. \left( \sum\\_{k=1}^n b\\_k^2 \right)
    12. ```
    13. ```math
    14. \dfrac{
    15. \tfrac{1}{2}[1\-(\tfrac{1}{2})^n] }
    16. { 1\-\tfrac{1}{2} } = s\_n
    17. ```
    18. ```katex
    19. \displaystyle
    20. \frac{1}{
    21. \Bigl(\sqrt{\phi \sqrt{5}}\-\phi\Bigr) e^{
    22. \frac25 \pi}} = 1\+\frac{e^{\-2\pi}} {1\+\frac{e^{\-4\pi}} {
    23. 1\+\frac{e^{\-6\pi}}
    24. {1\+\frac{e^{\-8\pi}}
    25. {1\+\cdots} }
    26. }
    27. }
    28. ```
    29. ```latex
    30. f(x) = \int\_{\-\infty}^\infty
    31. \hat f(\xi)\,e^{2 \pi i \xi x}
    32. \,d\xi
    33. ```

结果

f(x)=f^(ξ)e2πiξxdξf(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi

(k=1nakbk)2(k=1nak2)(k=1nbk2)\displaystyle \left( \sum\{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)

12[1(12)n]112=sn\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] } { 1-\tfrac{1}{2} } = s_n

1(ϕ5ϕ)e25π=1+e2π1+e4π1+e6π1+e8π1+\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }

f(x)=f^(ξ)e2πiξxdξf(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi

KaTeX vs MathJax

https://jsperf.com/katex-vs-mathjax