流程图
代码
```flowst=>start: User loginop=>operation: Operationcond=>condition: Successful Yes or No?e=>end: Into adminst\->op\->condcond(yes)\->econd(no)\->op```
结果

时序图
代码
```seq.........```# or```sequence.........```
结果

数学公式
行内的公式 Inline
代码
$$E=mc^2$$Inline 行内的公式 $$E=mc^2$$ 行内的公式,行内的$$E=mc^2$$公式。$$c = \\pm\\sqrt{a^2 \+ b^2}$$$$x > y$$$$f(x) = x^2$$$$\alpha = \sqrt{1\-e^2}$$$$\(\sqrt{3x\-1}\+(1\+x)^2\)$$$$\sin(\alpha)^{\theta}=\sum\_{i=0}^{n}(x^i \+ \cos(f))$$$$\\dfrac{\-b \\pm \\sqrt{b^2 \- 4ac}}{2a}$$$$f(x) = \int\_{\-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}\-\phi\Bigr) e^{\frac25 \pi}} = 1\+\frac{e^{\-2\pi}} {1\+\frac{e^{\-4\pi}} {1\+\frac{e^{\-6\pi}} {1\+\frac{e^{\-8\pi}} {1\+\cdots} } } }$$$$\displaystyle \left( \sum\\_{k=1}^n a\\_k b\\_k \right)^2 \leq \left( \sum\\_{k=1}^n a\\_k^2 \right) \left( \sum\\_{k=1}^n b\\_k^2 \right)$$$$a^2$$$$a^{2\+2}$$$$a\_2$$$${x\_2}^3$$$$x\_2^3$$$$10^{10^{8}}$$$$a\_{i,j}$$$$\_nP\_k$$$$c = \pm\sqrt{a^2 \+ b^2}$$$$\frac{1}{2}=0.5$$$$\dfrac{k}{k\-1} = 0.5$$$$\dbinom{n}{k} \binom{n}{k}$$$$\oint\_C x^3\, dx \+ 4y^2\, dy$$$$\bigcap\_1^n p \bigcup\_1^k p$$$$e^{i \pi} \+ 1 = 0$$$$\left ( \frac{1}{2} \right )$$$$x\_{1,2}=\frac{\-b\pm\sqrt{\color{Red}b^2\-4ac}}{2a}$$$${\color{Blue}x^2}\+{\color{YellowOrange}2x}\-{\color{OliveGreen}1}$$$$\textstyle \sum\_{k=1}^N k^2$$$$\dfrac{ \tfrac{1}{2}[1\-(\tfrac{1}{2})^n] }{ 1\-\tfrac{1}{2} } = s\_n$$$$\binom{n}{k}$$$$0\+1\+2\+3\+4\+5\+6\+7\+8\+9\+10\+11\+12\+13\+14\+15\+16\+17\+18\+19\+20\+\cdots$$$$\sum\_{k=1}^N k^2$$$$\textstyle \sum\_{k=1}^N k^2$$$$\prod\_{i=1}^N x\_i$$$$\textstyle \prod\_{i=1}^N x\_i$$$$\coprod\_{i=1}^N x\_i$$$$\textstyle \coprod\_{i=1}^N x\_i$$$$\int\_{1}^{3}\frac{e^3/x}{x^2}\, dx$$$$\int\_C x^3\, dx \+ 4y^2\, dy$$$${}\_1^2\!\Omega\_3^4$$
结果
Inline 行内的公式
多行公式 Multi line
代码
math orlatex or ```katex
```mathf(x) = \int\_{\-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi``````math\displaystyle\left( \sum\\_{k=1}^n a\\_k b\\_k \right)^2\leq\left( \sum\\_{k=1}^n a\\_k^2 \right)\left( \sum\\_{k=1}^n b\\_k^2 \right)``````math\dfrac{\tfrac{1}{2}[1\-(\tfrac{1}{2})^n] }{ 1\-\tfrac{1}{2} } = s\_n``````katex\displaystyle\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}\-\phi\Bigr) e^{\frac25 \pi}} = 1\+\frac{e^{\-2\pi}} {1\+\frac{e^{\-4\pi}} {1\+\frac{e^{\-6\pi}}{1\+\frac{e^{\-8\pi}}{1\+\cdots} }}}``````latexf(x) = \int\_{\-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi```
结果
